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Abstract

We study learning in a noisy bisection
model: specifically, Bayesian algorithms to
learn a target value V given access only
to noisy realizations of whether V is less
than or greater than a threshold θ. At
step t = 0, 1, 2, . . ., the learner sets thresh-
old θt and observes a noisy realization of
sign(V − θt). After T steps, the goal is
to output an estimate V̂ which is within
an ε-tolerance of V . This problem has
been studied, predominantly in environ-
ments with a fixed error probability q < 1

2
for the noisy realization of sign(V − θt). In
practice, it is often the case that q can ap-
proach 1

2 , especially as θ → V , and there
is little known when this happens. We
give a pseudo-Bayesian algorithm which
provably converges to V . When the true
prior matches our algorithm’s Gaussian
prior, we show near-optimal expected per-
formance. Our methods extend to the gen-
eral multiple-threshold setting where the
observation noisily indicates which of k ≥ 2
regions V belongs to.

1 INTRODUCTION

Learning with thresholded signals or binary observa-
tions is an important problem that appears in many
contexts. Typically, a learner who is trying to lo-
cate a target identifies a set of intervals, then re-
ceives a (potentially noisy) signal indicating which
interval the target is in. For example, in online dy-
namic pricing, a seller wishes to determine the de-
mand curve. She sets a price for a good and observes
whether or not the arriving buyer chooses to pur-
chase at that price [Harrison et al., 2010]. In drug

dosage discovery, the goal is typically to estimate the
maximum dosage level that causes toxicity with less
than some target probability (this is typically the
focus of Phase I clinical trials) [Cheung and Elkind,
2010]. Threshold queries are also used in image or
face localization, where classifiers are used as sub-
routines to determine whether or not a face or letter
or character appears in the query region of some im-
age [Sznitman and Jedynak, 2010].

The literature on learning from such noisy thresh-
olded signals has typically focused on noise of a par-
ticular form: nature generates the correct answer,
but it is then sent through a noisy transmission chan-
nel [Jedynak et al., 2011]. Thus, the probability of
seeing the wrong signal is constant, independent of
the point of measurement (the particular threshold
set by the learner). Several papers have focused on
proving the asymptotic optimality of policies that
measure either at or around the median [Horstein,
1963, Burnashev and Zigangirov, 1974, Castro and
Nowak, 2008]. Recent work shows that measuring at
the median is sequentially optimal for entropy reduc-
tion in the case of symmetric noise [Waeber et al.,
2011]. In a different vein, Karp and Kleinberg [2007]
consider noisy binary search: in this problem, a fi-
nite sequence of biased coins, ordered in increasing
probability of a “heads” outcome, has to be searched
for the last element with a probability of heads lower
than a specified target value.

The bisection problem itself can also be thought
of as a version of the classic problem of stochastic
root finding [Robbins and Monro, 1951], where the
learner is trying to learn the root of a real-valued,
decreasing function f . The model is that the learner
sequentially queries at points θ1, θ2, . . . , θn, and re-
ceives observations of f(θ1), f(θ2), . . . , f(θn) after
addition of noise (e.g. zero-mean Gaussian noise). A
natural extension to binary signals is to assume that
the learner observes whether or not the corrupted



signal is above or below zero. This directly corre-
sponds to a noisy binary signal indicating whether
the threshold is smaller than or larger than the root.
In this case, the noise model is heavily dependent
on how close the threshold is set to the target root.
When the threshold is near the target, the probabil-
ity of seeing the wrong signal is significantly higher
and no longer bounded away from 1

2 .

We consider learning in exactly this model, assuming
a parametric (Gaussian) model for the noise. We dis-
cuss the single-threshold case, although our results
generalize to multiple thresholds. Specifically, we
assume that the learner is trying to locate a target
V on the real line. She sets thresholds {θt}t≥0 and
receives signals xt ∈ {−1,+1} generated according
to whether or not V + zt < θt for zt ∼i.i.d N (0, σz),
t = 0, 1, 2, . . .. Little is known about this version
of the problem, but lower bounds can be obtained
by learning the unthresholded problem, which is just
the problem of estimating the mean of a Gaussian
by sampling.

Contributions We present an algorithm that un-
conditionally converges to V with high probabil-
ity. Our algorithm starts with a Gaussian prior
on V with mean µ0 and variance σ2

0 . Maintaining
the posterior is challenging, and we use a moment-
matching approach to maintain an approximate pos-
terior which is Gaussian N (µt, σt).

The important regime for the algorithm is when the
ratio ρ0 = σ0/σz is small, because signals are essen-
tially noiseless in the regime where this ratio is high,
and any of a variety of algorithms can be used to
“localize” the prior appropriately (we give one such
algorithm in the paper, and compare it with an ex-
act non-parameteric Bayesian method). If the prior
is correct, then we show that, in the ρ0 → 0 regime,
our algorithm outputs an estimate V̂ whose expec-
tation (over the prior and the random observations)
has converged to within ε of V in time O( 1

ρ2
0

1
εk

),

polynomial in 1/ρ0 and 1/ε, k being an absolute con-
stant greater than but close to 1, independent of the
problem parameters. For comparison, the estimate
using exact Bayesian updating with non-thresholded
signals has an expectation which has O( 1

ρ2
0

1
ε ) time to

convergence; this shows that our algorithm is asymp-
totically optimal with respect to ρ0 and near opti-
mal with respect to ε. In other words, noisy binary
signals are almost as powerful as the unthresholded
original signals.

We also evaluate our algorithm experimentally, and
show that its performance in practice is close to that

of a learner with access to exact signals. Due to
space limitations, we present proof sketches of our
main results here and postpone the details to a full
version of the paper.

2 THE LEARNING PROBLEM

We consider the following sequential learning prob-
lem to determine, within error tolerance ε, an un-
known value V ∈ R. At time step t ∈ {0, 1, 2, . . .},
the learner sets a threshold θt. In the general set-
ting, V is arbitrary. We model the noisy observa-
tions with thresholded additive noise. Specifically,
suppose the learner sets a threshold θt at step t; the
observation xt is determined by

xt = sign(V + zt − θt),

where zt ∼ N (0, σz) are independent normally dis-
tributed noise realizations, and the signum function
is −1 for a negative argument and +1 otherwise.
Notice that if θt = V , then xt is a random sign.
The learner is faced with two tasks: how to set the
threshold at each time step, which is a sequential
decision task; and, how to infer V given the obser-
vations which result from the thresholds. At some
time T , the learner outputs an estimate V̂ and pays
a cost equal to (V̂ − V )2.

The Bayesian Setting. At time t = 0, 1, 2, . . .,
assume a (prior) distribution for V , which we denote
pt(v). After observation xt, the Bayesian update to
the distribution is given by

pt+1(v) = Φ (xt(v − θt)/σz) pt(v)/At,

where At =
∫∞
−∞ dv pt(v) Φ (xt(v − µt)/σz), and

Φ(·) is the standard normal CDF. Assuming pt is
correct, which may not be the case, pt+1 incorpo-
rates all the new information from xt. At time t,
the best estimate of V is given by the mean of the
distribution, which we define as

µt = Ept [V ] =

∫ ∞
−∞

dv vpt(v).

If the learner had to output an estimate for V at
time t, the expected cost is the variance,

σ2
t = Varpt [V ] =

∫ ∞
−∞

dv v2pt(v)− µ2
t .

We wish to minimize σ2
T . In principle, one can set

up a dynamic program to solve this problem, where
the state is an entire probability distribution. This
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is very challenging to solve in such an infinite di-
mensional space; however, approximate solutions are
possible [Das and Magdon-Ismail, 2008]. Further, as
we will see, a very simple, myopic strategy works al-
most as well (provably).

The Starting Prior. As with all Bayesian infer-
ence algorithms, we need to start with some prior
p0(v). In our context, the noise in the signals is
based on a normally distributed random variable
zt ∼ N (0, σz). One way to quantify the uncertainty
in the learner’s prior is through the learner’s ini-
tial variance, which we define as σ2

0 = ρ2
0σ

2
z (and,

in general, σ2
t = ρ2

tσ
2
z). Given the learner’s initial

variance, in accordance with the principal of maxi-
mum entropy, we adopt the least informative prior.
This happens to be the normal distribution, so we
assume that p0(v) = N (0, ρ0σz) (we can always as-
sume µ0 = 0 by translating V ).

The dimensionless parameter ρ0 is an important
measure of the harshness of the learning environ-
ment. The harshest environment has ρ0 → 0, where,
if the prior is correct, the learner is very sure of her
belief about V , but the signals are essentially ran-
dom signs, and so it is hard to make any progress in
learning from the observations. This is the regime we
are interested in because (i) it is the hard interesting
problem; and, (ii) any inference based algorithm will
eventually get more and more certain as it receives
more observations, which means that ρt → 0. Thus,
if it is to succeed, any algorithm has to be able to
make good progress in this harsh regime. In fact,
any reasonable heuristic (and we present one) can
learn when the observations are relatively noiseless;
the ultimate performance of an algorithm is depen-
dent on its behavior in this ρ → 0 regime. From
now on, we set the scale of the problem by choosing
σ2
z = 1 (which is without loss of generality).1

Myopic Thresholds. The simple myopic strat-
egy, within the Bayesian setting, is to set θt =
µt. This may or may not be sequentially optimal,
but as we will prove later, it is sufficient to ob-
tain near-optimal asymptotic performance. With
multiple thresholds, the selection of thresholds be-
comes non-trivial and is dictated by the assump-
tions/constraints of the problem. However, our state
update procedure can easily be extended to such
situations and, since multiple thresholds provide
strictly more information, the performance cannot
be worse than that of the single-threshold algorithm

1The scale can always be added back through powers
of σz using dimensional arguments.

which itself is near-optimal.

To implement the myopic single-threshold strategy,
one only needs to compute µt at every time step,
and perform the Bayesian update after observing
xt. Unfortunately, this computation requires calcu-
lation of two integrals (one to compute At, and one
to compute the expectation) which are not analyt-
ically tractable, even for elementary starting priors
p0(v). The natural alternative is to use numerical
integration. However, numerical integration leads
to issues of numerical stability and efficiency. To
compute pt, one needs to store the entire history
of θt, xt, At, which is O(t), and then the running
time to set θt, if we compute the integrals numeri-
cally with N quadrature points, is O(Nt). Together
with the numerical instability, this rapidly becomes
computationally infeasible. In addition, algorithmic
issues can arise in selecting appropriate finite bounds
for the integration domain.

2.1 Non-Parametric Histograms

Once the choice of thresholds has been made (in our
case, myopically), the main challenge is to efficiently
update the prior. A useful near-exact benchmark
is to use a non-parametric finite distribution as the
prior. Let v1 < · · · < vN be N possible values for
V with corresponding probabilities q1, . . . , qN . Then
the prior p0(v) is represented by the vector q. The
Bayesian update is given by

pt+1(vi) =
1

At
Φ (xt(vi − θt)) pt(vi),

where At =
∑N
i=1 Φ (xt(vi − θt))pt(vi). The mean is

computed as a finite sum, µt =
∑N
i=1 vipt(vi). Each

step takes O(N) time. If we wish to obtain con-
vergence to within ε of V , then the resolution in
the finite prior should be O(ε), which means that
N = Ω(ε−1), making this a computationally intense
procedure. Another problem with this approach is
that one must commit to a range for V , introduc-
ing additional assumptions, and leading to serious
problems when V is outside, or in the tail of, the
range. Nevertheless, this benchmark is useful for
giving some insight into the behavior of the Bayesian
update, which will lead to our proposed algorithm.
Starting from a Gaussian prior, and running the non-
parametric updates, we illustrate how the posterior
evolves in Figure 1.

2.2 Our Algorithm: Approximate Inference

The detailed description of our algorithm is given in
Section 3. We give a quick overview of the intuition
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(i) Truncation (ii) Collapse (iii) Convergence

Figure 1: Evolution of pt(v) using non-parametric histograms and Bayesian updates; p0(v) is N (0, ρ0),
ρ0 = 10, V ≈ 9.45. Typical evolution consists of 3 main phases. (i) Truncation (ρ0 � 1): all observations
are in the same direction (here xt = +1) and almost noiseless, so the Bayesian update essentially truncates
and renormalizes the distribution. Shown for comparison is the truncation heuristic from our algorithm,
which approximates this phase. (ii) Collapse: when the first observation in the opposite direction arrives
(here xt = −1), the distribution collapses to something more symmetric, although not quite normal. Shown
for comparison is the entropy-matched normal with the same mean. (iii) Convergence: ρt is typically small
and µt is close to V (the algorithm has (probabilistically) bracketed V ). From then on, nearly independent
observations which are close to random signs cause the distribution to rapidly converge to normal (as would
be expected with truly independent observations).

here. The basic idea is to start from a normal prior,
p0(t) = N (0, ρ0) and perform approximate inference,
by maintaining approximations to pt and placing
thresholds according to these approximations. We
defer proofs for the moment, but briefly mention the
nature of these approximations (see Figure 1 for an
illustration). First, when all the observations are
in the same direction, we maintain a truncated nor-
mal distribution. Upon collapse (the first observa-
tion in the opposite direction), we revert back to
Gaussian, using entropy matching to set its param-
eters. Though the Gaussian is not very accurate at
collapse, this is only a transient, and so is not very
important. As convergence occurs, the Gaussian be-
comes a better and better approximation, so we re-
main in the Gaussian world, using moment matching
to update the parameters.

2.3 A Lower Bound for Optimal

We briefly comment on the best possible algorithm
within the Bayesian setting under the assumption
that the prior p0(v) ∼ N (0, ρ0) is correct. Suppose
one could actually observe the signals x̂t = V + zt
(without thresholding). Then one is certainly get-
ting more information and so should be able to do
better. With non-thresholded observations, we can
do the exact inference, because this is just a simpli-
fied scalar Kalman filter. Here, the true posterior is
Gaussian with

µt+1 =
µt + ρ2

t (V + zt)

1 + ρ2
t

and ρ2
t+1 =

ρ2
t

1 + ρ2
t

. (1)

Note that the evolution of ρt is deterministic and
can be solved for exactly: ρ2

t = ρ2
0/(1 + ρ2

0t). This
gives our expected cost at time T . One can actually
solve for the full distribution of µt. The following
theorem, which follows using standard probabilis-
tic arguments, gives the convergence of µt both in
expectation and with high probability. We assume
µ0 = 0, {zt}t≥0 are i.i.d. N (0, 1), i.e. σz = 1.

Lemma 1. µt has a normal distribution with

E[µt] = V − V

1 + tρ2
0

and Var[µt] = ρ2
0

tρ2
0

(1 + tρ2
0)2

.

Fix an error tolerance ε > 0. The dependence of
the expected value on t immediately implies a lower
bound on the time after which the expectation of µt
(which is our output estimate V̂ ) is within ε of V .
Further, the distribution for µt tells us that if we fix a
small confidence parameter δ, 0 < δ � 1, and define
ζ = −Φ−1(δ) = Θ(

√
ln(1/δ)), then (for V > 0) with

probability at least δ, µt ≤ E[µt]−ζ
√

Var[µt], which
allows us to get a lower bound on t if we want high
probability convergence.

Theorem 1. Fix ε < |V |
2 , δ ≤ Φ(−1). For t >

|V |/2ερ2
0, |V |−|E[µt]| < ε. For t > max

{
2|V |
ερ2

0
, 4ζ2

ε2

}
then Pr[µt > V − ε] > 1− δ for V > 0 and Pr[µt <
V + ε] > 1− δ for V < 0.

The theorem says that to get convergence in ex-
pectation, O(V/ερ2

0) time is needed; if one wants
convergence with probability at least 1 − δ, then
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Algorithm 1 The Learning Algorithm

Initialize l0 = −∞,r0 =∞,m0 = µ0,s0 = σ0.
for t = 0, 1, 2, . . . do

Set threshold at µt;
Receive noisy thresholded signal xt;
Update lt, rt,mt, st;
Compute µt+1, ρt+1 = σt+1/σz;

end for

O(V/ερ2
0 + ln 1

δ /ε
2) time is needed. These bounds

will be useful in showing that our algorithm is nearly
as good as exact inference with non-thresholded ob-
servations. This will mean that thresholding does
not significantly impede our ability to learn!

3 THE ALGORITHM

Our algorithm is illustrated in Figure 2. The state of
the learner at time t is completely described in terms
of four parameters, (lt, rt,mt, st), that describe its
current belief distribution, which can take on two
forms: either Gaussian, or truncated Gaussian. The
support of the distribution is given by (lt, rt) (in all
cases, either lt = −∞ or rt = ∞); the location and
shape of the distribution are determined by mt, s

2
t

(mean and variance of the underlying Gaussian).
Thus the learner’s belief distribution is a rescaled
normal distribution on the support (lt, rt).

pt(v) =


N
(
v−mt

st

)
st

(
Φ
(
rt−mt

st

)
− Φ

(
lt−mt

st

)) v ∈ (lt, rt),

0 otherwise,

where N(·) is the standard normal PDF. The initial
prior is normal with mean 0 and variance ρ2

0 (σz =
1), which is described by the state (−∞,∞, 0, ρ0).
One parameter in the algorithm is a threshold ρ∗;
as long as ρt ≤ ρ∗, the learner’s belief will be Gaus-
sian. If the belief is Gaussian and ρt > ρ∗, the belief
will transition to a truncated Gaussian. The side
of the truncation depends on the sign of the next
observation. If the belief is a truncated Gaussian,
then it will transition to Gaussian if the standard
deviation ρt drops below ρ∗; or, if the signal causes
the distribution to collapse as indicated in Figure 1
(this happens when either lt = −∞ and xt = +1 or
rt = ∞ and xt = −1). A high level desciption is
given in Algorithm 1. Now we describe the detailed
update procedures.

Approximate Gaussian Inference (ρt ≤ ρ∗).
As in Das and Magdon-Ismail [2008], in transition-

Gaussian belief

Truncated 
Gaussian belief

ρ
t
 > ρ∗

ρ
t
 ≤ ρ∗

OR x
t
 is on finite

support side
 of µ

t

ρ
t
 > ρ∗

& x
t
 is on infinite

support side
 of µ

t

ρ
t
 ≤ ρ∗

Figure 2: Learner’s state transitions.

ing from Gaussian to Gaussian, we can compute the
mean and variance of the true posterior, and we ap-
proximate this with the Gaussian that has the same
mean and variance. So we perform approximate
moment matching inference in this case. Das and
Magdon-Ismail [2008] derive exactly such moment
matching equations for two thresholds, which we can
directly specialize to the single threshold case:

µt+1 = µt + xt

(
σz
√

2/π
)
ρ2
t√

1 + ρ2
t

; (2)

ρ2
t+1 = ρ2

t

[
1 + ρ2

t (1− 2/π)

1 + ρ2
t

]
. (3)

Truncation (ρt > ρ∗). When ρt is large, we ap-
proximate the inference by truncating (as in Fig-
ure 1) as long as the signal is consistent with the
truncation. The state updates are:

(lt,∞,mt, st)
(θt,xt=+1)−→ (θt − 2σz,∞,mt, st);

(−∞, rt,mt, st)
(θt,xt=−1)−→ (−∞, θt + 2σz,mt, st).

Collapse No matter what ρt is, if the signal is
inconsistent with the truncated Gaussian, then we
collapse back to Gaussian (see Figure 1). Unfortu-
nately, updating to a Gaussian using moment match-
ing would take the distribution with finite support
and collapse to a distribution with infinite support
and the same variance, typically producing a Gaus-
sian that is too localized although there can be a lot
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of uncertainty in the learner’s posterior. So a bet-
ter way to capture this uncertainty is by matching
the entropy. We call this approximate inference by
entropy matching. To make the entropy matching
analytically tractable, we first doubly truncate the
distribution (as in regular truncation), compute the
mean and entropy of the resulting distribution, and
then collapse to the Gaussian with this mean and
entropy. For finite lt and rt, the state updates are:

(lt,∞,mt, st)
(θt,xt=−1)−→ (−∞,∞, µt+1, ρt+1);

(−∞, rt,mt, st)
(θt,xt=+1)−→ (−∞,∞, µt+1, ρt+1).

We abuse notation above, in that the updates are not
the same in both cases. In the top case (xt = −1),
set l = lt and r = µt + 2σz; in the bottom case
(xt = +1), set l = µt − 2σz and r = rt. Then, a te-
dious but straightforward computation of the mean
and entropy of the resulting rescaled doubly trun-
cated Gaussian with support (l, r) and parameters
(mt, st), followed by entropy matching gives:

µt+1 = mt+1 + st+1

[
N(l′)−N(r′)

Φ(r′)− Φ(l′)

]
,

σ2
t+1 = s2

t+1

[
(Φ(r′)− Φ(l′))2e

l′N(l′)−r′N(r′)
Φ(r′)−Φ(l′)

]
.

where l′ = (l −mt) /st, r
′ = (r −mt) /st.

4 ANALYSIS

We now analyze the algorithm presented in Sec-
tion 3. The algorithm has two basic phases. The
first is if ρt is large, in which case the algorithm is
a heuristic that truncates the distribution until co-
lapse into the Gaussian world, at which point the
process (truncation→collapse) repeats until ρt gets
below ρ∗. We do not go into the details of the dy-
namics for ρt > ρ∗ because in this relatively noiseless
regime, many heuristics can “localize” the posterior
quickly. The interesting regime is ρt → 0, when the
signals start to get noisy. In this regime, our al-
gorithm will always be doing approximate Gaussian
inference (since ρt is decreasing), updating according
to Equations (2) and (3). Once in this regime, we
essentially show that our algorithm is near optimal
by proving that µt converges quickly to V in expec-
tation, and it also does so with high probability. For
asympotic results, we have in mind that ρ0 → 0.

Theorem 2. There exist absolute positive constants
C > 0 and k, 1 ≤ k < π

√
2 ≈ 4.443 such that, if

t > C/(ρ2
0ε
k), then |V | − |E[µt]| < ε.
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Figure 3: An example of the time for E[µt] (com-
puted over 106 simulations) to converge to V − ε
(log-log scale) when V = 3, µ0 = 0, ρ0 = 0.5. Ev-
idently, the convergence time approaches O(1/ε) as
ε becomes small, hence it is near optimal.

Recall that the expectation is with respect to p0(v)
and the i.i.d. zt ∼ N (0, 1), hence this result is rele-
vant when the prior is correct. From Theorem 1, the
best we could hope for, even with non-thresholded
signals, for the expectation to get within ε of V is
t = O(1/ρ2

0ε). Thus, our dependence on ρ2
0 is op-

timal. The theorem gives polynomial convergence
in 1/ε but, in practice, k is almost 1, which is near
optimal asymptotic convergence, as illustrated with
an example in Figure 3.

Our second result demonstrates unconditional con-
vergence with high probability, regardless of whether
our prior p0(v) is correct. For simplicity, we assume
without loss of generality that V > 0. Note that µt
follows a stochastic process. We ask how long we
have to wait before, with high probability, µt will
have crossed V −ε. This analysis is sufficient to con-
vey the main point of the convergence, because once
you cross this barrier, the stochastic process has an
attractor at V , and so will stay in this region. The
tough part is getting to this region.

Theorem 3. Fix 0 < δ < 1, 0 < ε < V , 0 < ρ0 ≤ 1,
and define ∆ = V −ε. There is an absolute constant
C > 0 such that if t > T = eC(ln(1/δ)+∆)/ε/ρ2

0, then
with probability at least 1− δ, maxi≤t µi > V − ε.

This constant T gives us an upper bound on the
time at which µt first crosses V − ε. In the practical
setting where the prior is extremely ill specified, V
is very large and ε is usually specified as a percent-
age of V . Then, the exponent is some constant and
the dependence on 1/ρ0 is what we are interested
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in. Comparing with Theorem 1, we see that our al-
gorithm is asymptotically optimal with respect to
1/ρ0.

We now sketch the proofs of Theorems 2 and 3.
Throughout, assume that ρ0 ≤ 1. Let ηt be the
magnitude of the change in µt at time t. The proofs
of both theorems rely on the following lemma which
shows that ηt = Θ(1/t).

Lemma 2. For ρ0 ≤ 1, ηt <
c2
t

and

ηt >

{
c1ρ

2
0 t ≤ b1/ρ2

0c,
c1
t

t ≥ b1/ρ2
0c+ 1,

where c1 = 1
2
√
π

, c2 =
√

2
π

(
π+(π−2)ρ2

0

2

)
.

Proof of Theorem 2 (sketch). Let V > 0. De-
fine ξt = E [µt] as the expectation of µt with re-
spect to p0(v) and {zi}i<t and Ext [·] as the ex-
pectation with respect to the input xt at time t.
Now, Ext

[∆µt] = (2p+
t − 1)ηt, where p+

t = Pr[xt =
+1] = Φ (V − µt). The basic idea is to observe
that 2Φ (V − µt) − 1 = O(V − µt), and so ξt+1 =
ξt +O(V − ξt)ηt, or ξt+1− ξt ≈ c(V − ξt)/t for some
constant c, since ηt = Θ(1/t). If we treat this differ-
ence equation approximately as a differential equa-
tion and integrate, we find that the time needed for
ξt to reach V − ε satisfies t = t∗ (α/ε)

k
, k = 1/c,

where α > 0 is a constant independent of ε, t∗ is the
time needed for all the approximations to become ac-
curate and is asymptotically O(eV/α/ρ2

0). However,
asymptotically, ηt gets close to its upper bound of√

2
π

(
π+(π−2)ρ2

0

2

)
/t so that k approaches its lower

bound of 1.

Proof of Theorem 3 (sketch) Given the ini-
tial belief distribution N (0, ρ0), the value of ρt, and
hence of ηt, for each t ≥ 0 is completely deter-
mined. Thus, after t time-steps, the learner could
attain any one of at most 2t pre-defined values
of µt each corresponding to a unique path of the
form

[
(0, 0), (µ(1), 1), ..., (µ(t), t)

]
in the (µ, t)-space,

where µ(t) denotes one of the possible mean beliefs
that the learner could have at time t. With this in-
sight, we define a reinforcement learning setting in
which each such path is a state of the learner. De-
fine S = {s =

[
(0, 0), ..., (µ(t), t)

]
;µ(t) < V − ε}.

Obviously, p+
t > p̂ = Φ (ε) > 0.5 for any s in S.

Let us denote by π the policy under which the
action in any state s ∈ S is to go to the state
[s; (µ(t) + ηt, ρt+1)] or [s; (µ(t) − ηt, ρt+1)] with con-
stant probabilities p̂, and (1− p̂) respectively, and

by π′ the policy under which the corresponding tran-
sition probabilities are p+

(t) and (1 − p+
(t)) (π′ corre-

sponds to our approximate inference algorithm). For
a given time-horizon [0, τ ], the value function V π

∗

τ (s)
for state s under policy π∗ ∈ {π, π′} is defined as the
probability of hitting (V − ε) in the interval [t, τ ],
starting from state s under the policy π∗.

Lemma 3. For any s =
[
(0, 0), ..., (µ(t), t)

]
∈ S,

where t < τ , V π
′

τ (s) ≥ V πτ (s).

In particular, for the initial state ϕ = [(0, 0)],
V π
′

τ (ϕ) ≥ V πτ (ϕ). We now focus on deducing a lower
bound on V πτ (ϕ) = Pr

[
µ(τ) ≥ V − ε|π

]
for the dom-

inating process. Noting that for any s ∈ S under π,
E [∆µt] = (2p̂ − 1)ηt ∀t ≥ 0 so that µ(t) is the sum

of i.i.d. random variables {∆µi}t−1
i=0 and has expec-

tation (2p̂− 1)
∑t−1
i=0 ηi, Pr

[
µ(τ) ≥ V − ε|π

]
equals

Pr

[
µ(τ) − E

[
µ(τ)

]
≥ −(2p̂− 1)

τ−1∑
t=0

ηt + ∆
∣∣π]

where ∆ = V − ε. It is not difficult to show that for

τ > τ ′ =
(
b 1
ρ2

0
c+ 1

)
exp

(
2
√
π∆

2p̂−1

)
, (2p̂−1)

∑τ−1
t=0 ηt−

∆ > 0 . Hence, for τ > τ ′, by Hoeffding inequality,
we have that Pr

[
µ(τ) ≥ V − ε|π

]
≥ 1− δ for

δ ≥ exp

−2
(

(2p̂− 1)
∑τ−1
t=0 ηt −∆

)2

∑τ−1
t=0 (2ηt)2

 .
Combining this result with Lemma 3, we conclude
that the above inequality also holds for our algo-
rithm, i.e. Pr

[
µ(τ) ≥ V − ε|π′

]
≥ 1− δ. After some

tedious algebra, we can finally obtain the required
lower bound on the time for the above inequality to
hold for a given δ.

5 EXPERIMENTAL RESULTS

We perform experiments to evaluate the practical
performance of our algorithm. Our simulations mea-
sure convergence time as the time taken by µt to
enter the region [V − ε, V + ε] for the first time. We
are interested in the dependence of the convergence
time on ρ0 and ε.

First, we compare the non-parametric algorithm
(NonParam) to exact inference on non-thresholded
signals, and show that noisy binary signals are al-
most as informative as the unthresholded signals.
This is already surprising. Assuming that the prior
is correct, we set the support of the non-parametric
histogram to [−6ρ0, 6ρ0] and use 1,000 histogram
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Figure 4: Plot of average correct-prior convergence
time vs ρ0, logarithmic along the vertical axis.

bins. We generate V randomly according to p0

and any value of V outside this finite support is
discarded. For our algorithm, we set the switch-
over parameter ρ∗ = 2.5. The number of steps
taken by each algorithm to converge to the region
[V −ε, V +ε], averaged over 108 runs for NonParam
and 109 runs for each other algorithm, is reported in
Figure 4.

In our second set of simulations, we fix σ0 at 0.5
and vary ε. To ensure adequate resolution for Non-
Param, we use 24ρ0/ε bins (giving a resolution of
ε/2). The number of steps to convergence is pre-
sented in Figure 5. The average is over 105 runs for
NonParam (owing to computational burden) and
107 runs for each other algorithm. It is clear from
the figures that not only is learning from noisy bi-
nary thresholds feasible in this Bayesian model, but
can be performed almost as well as learning from
non-thresholded signals, in accordance with the the-
ory.
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